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Abstract

In our project, we try to develop a machine learning algorithm for metabolite
profiling and quantification in complex mixtures via NMR data. We chose urine
as our complex mixture to develop the model on. We synthetically generated the
dataset using RDolphin and added noise by varying positions in a small range and
changing peak heights. We plan to use a simple regression model in the beginning
and go on to use CRNN which has shown promising results in the past.

1 Introduction

We encounter numerous complex mixtures in various fields such as food science, biomedical research,
metabolomics, health science, etc. Typically, we utilize analytical chemistry tools such as chro-
matography coupled with mass spectrometry (GC-MS, LC-MS) for analysing these mixtures. While
these techniques offer high sensitivity and resolution, they often entail extensive sample preparation
and have limited coverage of chemical classes. Additionally, they may require the use of multiple
separation and detection methods to comprehensively characterize complex mixtures, resulting in
increased complexity and time investment.

Nowadays, NMR spectroscopy has become increasingly prevalent in various industries and research
fields. This technique is being widely adopted for the analysis of complex mixtures due to its
non-destructive and non-invasive nature. It allows researchers and professionals to simultaneously
detect and identify multiple compounds within mixtures without the need for extensive sample
preparation or separation steps. NMR is being utilized in diverse areas such as biomedical research,
environmental science, food analysis, and industrial manufacturing, highlighting its versatility and
effectiveness in modern analytical practices.

Analysing NMR spectra presents several challenges due to their high complexity, comprising thou-
sands of data points from numerous metabolites with varying sensitivities. Extracting informative
signals requires significant computational power and dedicated screening pipelines. Additionally,
clusters from different metabolites may heavily overlap, posing difficulties in accurate signal decom-
positions, particularly for low-concentration metabolites neighbouring dominant ones. Furthermore,
NMR spectra are affected highly by the environment and instrumental variations, leading to alterations
in signal patterns and positional shifts compared to reference libraries.

Despite the above obstacles, the most common method for metabolite analysis in NMR spectra
presently depends on expert annotation. NMR professionals use software like Chenomx to manually



match probable metabolite candidates from a reference library to the mixture, resulting in a final
fitting report. However, this procedure takes a lot of time, relies on professional judgement, and is
prone to subjectivity, which may jeopardise repeatability. The complexities and variations involved
limit the widespread application and hinder the efficient interpretation of NMR spectra, particularly
in clinical settings. Hence, exploring the integration of machine learning (ML) holds promise.
ML algorithms could offer automated and objective metabolite identification and quantification,
overcoming the limitations of manual annotation and enhancing reproducibility and efficiency in
NMR-based metabolomics analyses.

2 Related Works

There have been several attempts in developing a ML model to identify and quantify metabolites and
most of them outperforms the available automated alternatives.

For instance, BQuant adopts a probabilistic strategy for this purpose. This method still relies on
database-based classification and measurement of metabolites within neighbouring features of the 1H
NMR plot. It involves representing the sample as a combination of reference profiles from a database
and inferring the classification and quantification of metabolites through Bayesian model selection.

DeepMID (deep-learning-based mixture identification method), uses a pseudo-Siamese convolutional
neural network (pSCNN) and a spatial pyramid pooling (SPP) layer to use to identify plant flavours
(mixtures)

SMART-Miner uses a CNN based algorithm for metabolite identification from 1H-13C HSQC spectra
Also, lot of targeted profiling have been done using PCA-based pattern recognition.

3 Methodology

3.1 Synthetic Data Generation

Manual annotation of metabolites and spectral features is typically necessary for training ML models,
which can be labour-intensive and time consuming, especially in cases of overlapping peaks and
ambiguous signals. Furthermore, the variability in experimental conditions, sample matrices, and
instrument parameters across different datasets adds to the complexity of data preprocessing and
standardization. Consequently, given the constraints of time and resources, opting for synthetic
datasets may offer a more feasible approach for us.

We followed the instructions provided on https://github.com/danielcanueto/rDolphin. The packages
utilized are from the same library they used for blood sample analysis. The parameter "Chemical
shift tolerance (ppm)" in the Region of Interest (ROI) was adjusted from the default value of 0.002 to
0.02 to get better mapping results.

To test the feasibility of the proposed workflow, we initially selected 14 representative metabolites.
Isoleucine, valine, 3-isobutyric acid, 3-hydroxy-isovalyric acid, alanine, acetic acid, phenyl acetyl
glutamine, citric acid, creatine, creatinine, urea, hippuric acid, taurine, hydroxy phenyl acetic acid
were the ones which was selected. These metabolites were chosen to represent various pattern com-
plexity and chemical shift values. The number of metabolites and metabolite candidates was selected
at random in simulated samples. Because capturing background noise and possible contamination
in genuine NMR spectra is challenging using synthetic data alone, we manually incorporated these
noises by creating both synthetic and real clean spectra for each sample.

Furthermore, for each simulated combination, we randomly picked one metabolite and combined
its genuine NMR spectrum with the remaining synthetic spectra from other samples. This approach
incorporates genuine differences inside synthetic samples while preventing them from becoming
unduly complex by heavy background noise.
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Figure 1: Possibilities of a single peak
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Figure 2: Simulated Data



3.2 NMR Data Preprocessing

In every experimental unprocessed 1H NMR data, potential disturbances from the machine or envi-
ronment can introduce noise in the spectra, leading to bias in identifying or quantifying metabolites.
To address this issue, Martin et al. developed a preprocessing pipeline for NMR data implemented
in PepsNMR. This pipeline includes baseline correction, which estimates and removes the baseline
from the sample to achieve ideal data. In general, the informative metabolite region in an NMR
spectrum ranges from -1 to 11 ppm on the axis. For our study involving fourteen metabolites, the
entire region was retained. However, in urine analysis, most metabolite signals are concentrated
between 0.7 and 4.5 ppm, thus only bands in this range were kept for computational effectiveness.
To suit the CRNN model’s input, the NMR spectra were scaled using an interpolation step. Then,
normalisation methods were applied to guarantee that all combinations were detected and measured
on the same scale. The classification model utilized min-max normalization to adjust the data from 0
to 1, while the quantification model normalized the areas under the curve of the samples to a constant
value of 1.
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Figure 3: Sample data after adding noise

3.3 Baseline Model

We had planned to try out a linear regression model on the dataset within this time frame which has
not been possible due to time constraints. We have decided to go ahead with the previous plan and
use a regression model first and then a CRNN model since it has shown promising results in the past.

3.4 Upcoming Plans

By the end of this project, we plan to:
[1] Run a linear regression model for quantification and a random forest model for profiling.

[2] Use two models - First profiling the components of the mixtures (CNN) and second quantifying
the classified components (RNN).

[3] Combine the two models (CRNN) and compare the individual accuracy.
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